
Preprint

UCRL-JC-138583

A New Coscheduling
Technique for a Cluster of
Symmetric
Multiprocessors

A. B. Yoo, M. A. Jette

This article was submitted to
International Conference on Parallel and Distributed Processing
Techniques and Applications
Las Vegas, NV
June 26-29,2000

u.S. Department of Energy

m-Lawrence
Livermore April 17,2000
National
Laboratory

Approved for public release; further dissemination unlimited



DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes maybe
made before publication, this preprint is made available with the understanding that it will not be cited
or reproduced without the permission of the author.

This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information

P.O. Box 62, Oak Ridge, TN 37831
Prices available from (423) 576-8401

http://apollo.osti. gov/bridge/

Available to the public from the
National Technical Information Service

U.S. Department of Commerce
5285 Port Royal Rd.,

Springfield, VA 22161
http://www.ntis.gov/

OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library

http://www.llnl. gov/ tid/Library.htrnl



A New Coscheduling Technique for a Cluster of

Symmetric Multiprocessors*

Andy B. Yoo and Morris .A. Jette

Lawrence Livermore National Laboratory

Livermore, CA 94551

e-mail: {yoo2 I ,jettel}@llnl. gov

Abstract

Coscheduling is essential for obtaining good performance in a time-shared symmetric multiprocessor
(SMP) cluster environment. However, the most common technique, gang scheduling, has limitations
such as poor scalability and vulnerability to faults mainly due to explicit synchronization between its
components. A decentralized approach called dynamic coschedrding (DCS) has been shown to be effec-
tive for network of workstations (N”OW), but this technique is not suitable for the workloads on a very
large SNIP-cluster with thousands of processors. Furthermore, its implernentation can be prohibitively
expensive for such a large-scale machine. In this paper, we propose a novel coscheduling technique
based on the DCS approach which can achieve coscheduling on ver~- large SMP-clusters in a scalable,
efficient, and cost-effective way. In the proposed technique, each local scheduler achieves coschedul-
ing based upon message traffic between the components of parallel ,jobs. Message trapping is carried
out at the user-level, eliminating the need for unsupported hardware or device-level prograrnrning.
A sending process attaches its status to outgoing messages so local schedulers on remote nodes can
make more intelligent scheduling decisions. Once scheduled, processes are guaranteed some minimum
period of time to execute. This provides an opportunity- to synchronize the parallel job’s components
across all nodes and achieve good program performance. The results from a performance study reveal
that the proposed technique is a promising approach that can reduce response time significantly over
uncoordinated scheduling.

1 Introduction

The most prevailing machine architecture for large-scale parallel computers in recent years has been the

cluster of symmetric multiprocessors (SMPS), which consists of a set of SMP machines interconnected

by a high-speed network. Each SMP node is a shared-memory multiprocessor running its own image

of an operating system (OS) and often constructed using commodity off-the-shelf (COTS) components

mainly due to economic reasons [1]. Continuous decrease in the price of these commodity parts in

conjunction with the good scalability of the cluster architecture has made it feasible to economically

build SMP clusters that have thousands of processors and total physical memory size in the order of

Terabytes. The most prominent example of such very large-scale SMP clusters is the Department of

Energy (DOE) Accelerated Strategic Computing Initiative (ASCI) project [5] machines [3, 4, 6]. For

instance, the Lawrence Livermore National Laboratory (LLNL) ASCI SKY machine is an IBM SP2 with

5856 processors, total system memory size of 2.6 Terabytes and peak performance of 3.9 Teraflops.

“This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence
Livermore National Laboratory under contract No. W7405-Eng-48.



Efficiently managing jobs running on parallel machines of this size while meeting various user demands

is a critical but challenging task. Most supercomputing centers operating SMP-clusters rely on batch

systems such as LoadLeveler [15, 26] for job scheduling [32]. We may utilize system efficiently using these

batch systems, but high system utilization usually comes at the expense of poor system responsiveness

with a workload consisting of long running jobs, as is typical of many large scale systems [11]. In a worst

case scenario, for example, a user who wants to execute a simple debugging job that runs for only a few

minutes may have to wait for several hours before sufficient resources are available to initiate the job. An

alternative scheduling technique that improves the system responsiveness while improving fairness and

freedom from starvation is time-sharing. With time-sharing, we can create virtual machines as desired

to provide the desired level of responsiveness.

Due to the SMP-cluster architecture and the popularity of standardized message passing libraries such

as MPI [20, 31], most applications running on an SMP-cluster follow the message-passing programming

model. An important issue in managing rnessage-passing parallel jobs in a time-shared cluster environ-

ment is how to coschedule the processes (or tasks) of each running job. Coscheduling here refers to a

technique that schedules the set of tasks constituting a parallel job at the same time so that they can

run simultaneously across all nodes on which they are allocated. When a parallel job is launched on an

SMP-cluster, a set of processes are created on the nodes allotted to the job. These processes of the job

usually cooperate with each other by exchanging messages. In most cases, two communicating processes

do not proceed until both processes acknowledge the completion of a message transmission. Therefore,

the interprocess communication becomes a bottleneck which may prevent the job from making progress if

both sending and receiving processes are not scheduled at the time of the message transmission. Without

coschcduling, the processes constituting a parallel job suffer high communication latencies due to spin-

waiting periods and context switches. The ill effect on system performance of running multiple parallel

jobs without coscheduling has been well documented [23]. It is very diflicult to coschedule parallel jobs

in a time-shared environment using local operating systems running independently on each node alone.

A new execution environment is required in which parallel jobs can be coscheduled.

A few research efforts have been made to develop a technique with which the coscheduling can be

achieved efficiently for SMP-clusters and networks of workstations (NOW). The simplest approach to

coscheduling is a technique called gang sch,eddin.g [12, 13, 16, 17, 18, 19]. In gang scheduling, a matrix

called gang matrix (or Ousterhaut matrix), which explicitly describes all scheduling information, is used.

Each column and each row of a gang matrix represent a processor in the system and a time slice during

which the processes in the row are scheduled to run, respectively. In other words, the entry in the ith

row and jth column of the gang matrix contains the information on the process which is assigned to

the ith processor and scheduled during the jth time slice. The coscheduling is achieved by placing all

the processes of a job on the same row of the gang matrix. The gang matrix is usually maintained by

a central manager running on a separate cent rol host. Alternately, distributed database techniques may

be used to maintain the gang matrix [18]. The gang matrix is distributed periodically or whenever there

is a change. Each node receives a portion of the gang matrix that is pertinent to that node instead of

the entire matrix. A small daemon process running on each node follows this well-defined schedule to

allocate resources to processes on that node. This simple scheduling action guarantees coscheduling of

parallel jobs due to the way the gang matrix is constructed. The gang scheduling technique is relatively

simple to implement. A few successful gang scheduling systems have been developed and operational on

actual production machines [16, 18].

However, gang scheduling has limitations, many of which stem from the support of a gang matrix

explicit ly describing scheduling activities for the entire system. First, correct coscheduling of jobs entirely

depends on the integrity of the distributed scheduling information. If any of these schedules, which are

transmitted through unreliable network, are lost or altered, it is highly likely that the jobs will not be

coscheduled. Second, the gang scheduler’s central manager is a single point of failure. Once the central

2



manager fails for any reason, the whole scheduling system fails. The last and the most serious drawback

of the gang scheduling technique is its poor scalability. As the number of nodes in the system increases,

not only the size of the gang matrix but also the number of control messages increases. These control

messages convey various information such as the node status, the health of local daemons and the jobs

running on each node, and so on. In many cases, the central manager is required to take appropriate

actions to process the information delivered by a control message. Due to the excessive load imposed on

the central manager, the gang scheduler does not scale well to very large system.

Another method for achieving coscheduling is a decentralized scheme called dynamic coscheduling

(DCS) [2, 22, 27, 28]. In DCS, the coordinated scheduling of processes that constitute a parallel job
is performed independently by the local scheduler, with no centralized control. Since there is no fixed

schedule to follow in DCS, the local scheduler must rely on certain local events to determine when and

which processes to schedule. Among various local events that a local scheduler can use to infer the status

of processes running on other nodes, the most effective and commonly-used one is message arrival. The

rationale here is that when a message is received from a remote node, it is highly likely that the sending

process on the remote node is already scheduled. What this implies is that upon receiving a message, the

local scheduler should schedule the receiving process immediately, if not already scheduled, to coschedule

both the sending and receiving processes.

A few experimental scheduling systems based on this method have been developed [2, 22, 27]. All

of these prototypes are inlplemented in an NOW environment, where workstations are interconnected

through fast switches like Myrinet [21]. Interprocess communication is carried out using high-performance

user-level messaging layers that support user-space to user-space communication [24, 29, 30] in these

systems to reduce communication latency. The implementation of DCS under such special communication

hardware and software involves programming switch firmware and network interface cards and developing

communication libraries.

The DCS technique can achieve effective, robust coscheduling of processes constituting a parallel job

and overcome the drawbacks of gang scheduling. However, current DCS implementations available may

not be suitable for a large-scale SMP-clusters. They do not address the issues related to interprocess com-

nnmicat ion via shared-memory. Furthermore, the purchase, deploy nlent, and maintenance of the special

hardware and software for an SMP-cluster with thousands of processors is both difficult and expensive.

Finally, fine-grain scheduling of the DCS scheme, which aims at quickly establishing coscheduling among

communicating processes may work well in an NOW environment where context switches among processes

of interactive and parallel jobs are very frequent, but it is not suitable for a large-scale SMP-cluster where

interactive jobs are usually executed on a separate pool of reserved nodes. Frequent context switches

among processes of parallel jobs will only hurt the performance due to increased communication Iatencies

and memory management overhead, including both cache refresh and potentially paging.

III this paper, we propose and evaluate a novel coscheduling technique for an SMP-cluster. Our goal

in this study is i) to design a technique that overcomes the shortcomings of previous approaches and can

still achieve coscheduling efficiently on a large-scale SMP-cluster, and ii) to verify its viability through

experiments.

Design criteria we used are as follows;

Good scalability. The scheduler should be easily scalable to a very large SMP-cluster.

Cost-effectiveness. Its implementation should not require to purchase any additional hardware or

software.

Portability. The system should be portable, and hence we should not make any changes to propri-

etary software such as local operating system or device driver.

3



● Low-overhead. The design has to be simple and efficient so that only minimal run-time overhead

occurs.

To achieve these design goals, we have adopted the DCS approach, which allows us to eliminate any

form of centralized control. The primary concern of the previous DCS schemes is boosting the priority

of a receiving process as quickly as possible on a message arrival to establish immediate coscheduling.

To accomplish this, they program network devices so that an incoming message can be trapped long

before the receiving process gets scheduled. We believe that what is more important to improve overall

performance is not reacting immediately to incoming messages but keeping the communicating processes

coscheduled while they are running. In the proposed scheme, therefore, a process of a parallel job, once

scheduled, is guaranteed to remain scheduled for certain period of time assuming that other processes of

the job are either already scheduled or getting scheduled through message exchanges.

A mechanism to detect message arrivals is embedded into a message-passing library whose source

code is freely available to the public making the design portable. On a message arrival, the receiving

process reports this to a local scheduler which makes appropriate scheduling decisions. Processes that

are not scheduled need to be run periodically to trap incoming messages. An adverse effect of this

sporadic execution of non-scheduled processes is that they may send messages triggering preemption of

other coscheduled processes. This problem is resolved by attaching the status of sending process to each

outgoing message.

We implement and evaluate the proposed coscheduling technique on a Compaq Alpha cluster testbed

at LLNL. The results from our measurements show that the proposed coscheduling technique cam reduce

job response time as much as 50~o over traditional time-sharing scheduling. The effect of various system

parameters on performance is also analyzed in this study.

The rest of the paper is organized as follows. Section 2 describes the proposed technique and its

implementation. Experiment results are reported in Section 3. Finally, Section 4 draws conclusions and

presents directions for future research.

2 Design and Implementation

2.1 Basic Design

The proposed coscheduler for SMP-clusters is designed based on two principles. First, it is essential for

achieving coscheduliug to make correct decisions on when and which processes on each node to schedule.

Second, it is crucial to maximize coscheduled time as a portion of scheduled time for the processes on

each node. If preemption occurs too frequently, the parallel job’s throughput will suffer from an increase

in spin-wait time at synchronization points, cache refresh delays, and potentially paging delays.

A key factor in scalable coscheduler design is decentralization of scheduling mechanism. An ideal

scalable coscheduler should not employ any centralized control or data structures, but completely rely

on autonomous local schedulers. Our coscheduling technique also follows such decentralized approach.

Without any global information on the status of all the processes in the system, each local scheduler has

to determine the status of remote processes and coschedule the local processes with their remote peers.

Exchanging control messages that contain process status information among local schedulers is not a

scalable solution. An alternative is to use certain implicit local information to infer the status of remote

processes. Such implicit information includes response time, message arrival, and scheduling progress [2].

Like all the previous work [2, 22, 27, 28], our coscheduler also depends on message arrival to acquire

status information of remote processes. The message arrival refers to the receipt of a message from a

remote node. When a message is received, this implies the sending process is highly likely to be currently

scheduled. Therefore, it is crucial to quickly schedule the receiving process to achieve coscheduling.

4



In order to implement this idea, we need a mechanism which detects the arrival of a message and

reports this to the local scheduler. This message trapping mechanism is performed at user-level in our

design to fulfill one of our design goals: cost-effectiveness. The implementation can be easily done by

inserting a few lines of code into a small number of application program interfaces (APIs) provided by an

open-source message-passing libraries like MPICH [14]. This code notifies the local scheduler of message

arrival through an interprocess communication (IPC) mechanism. The user-level message trapping allows

us to avoid the purchase of additional hardware and software and the need to do any device programming.

In addition, the use of publicly available software makes our design more portable.

The functions of local scheduler include maintaining information such as the process ID (pid) and the

status of processes assigned to the node and scheduling appropriate processes for coscheduling. When a

process is about to start or terminate execution, the process reports these events to the local scheduler

along with its own pid. When notified of these events, the local scheduler adds/removes the pid received

tolfrom the data structure it manages. Similarly, when a message arrives, the receiving process reports

this with its pid to the local scheduler, which then responds by performing appropriate scheduling oper-

ations. Here the report of message arrival serves as a request to local scheduler to schedule the receiving

process.

The group of processes constituting the same parallel job on each node serve as a scheduling unit.

That is, whenever a process is scheduled, its peer processes on the same node are also scheduled together.

This is to establish the coscheduling more quickly. Since the peer processes of a recently scheduled

process will be eventually scheduled via message-passing, we can reduce the time that takes to establish

the coscheduling by scheduling the entire group of peer processes at once instead of scheduling them

individually. More importantly, this strategy may increase the number of messages to other unscheduled

processes on remote nodes and hence achieve the coscheduling more quickly.

II] an attempt to reflect the second design principle, we ensure that all the newly scheduled processes

run for a certain period of time without being preempted. This guarantees that each parallel job, once

coscheduled, runs being coscheduled at least for the given time. We use a predetermined threshold value

for the guaranteed minimum execution time (GMET), but the value may be calculated dynamically as

well. Receiving a scheduling request from a user process, the local scheduler checks if the currently

scheduled processes have run at least for the GMET. If so, a context switch is performed. Otherwise, the

request is ignored.

While message arrivals cause user process to send scheduling requests, this can result in job starvation.

The starvation is prevented by a timer process that periodically sends a context switch request to the

local scheduler. The local scheduler, on receiving this request, performs a context switch in a similar

fashion to a scheduling request from a user process. In this case, however, the local scheduler selects

a new job to run. We use a time-slice on the order of seconds in this research, adhering to the second

design principle. The rationale behind such a long time-slice is to insure the job establishes coscheduling

and executes coscheduled for some minimum time.

There is a critical issue in conjunction with the user-level message trapping that needs to be addressed.

III order for a user process to trap incoming messages, the process itself has to be scheduled. Otherwise,

message arrivals will never be detected and reported to the local scheduler. The local scheduler in

our design, therefore, periodically schedules all the jobs for a very brief period of time to detect any

message arrival. A serious side effect of this simple approach is that the local scheduler may receive false

scheduling requests. A false scheduling request can be sent to the local scheduler when a user process

receives a message from a remote process which is scheduled for the message-trapping purpose. These

false scheduling requests may results in wrongful preemption of coscheduled processes and significant

performance degradation. We solve this problem by attaching the status of sending process to every

outgoing message. With the status of sending process available, the receiving process can easily decide

whether a context switch is needed or not on each message arrival. The design of the coscheduler is shown

5



Message-Passing Library Message-Passing Library

I

start (pid. applic.ltion_ id): stwt (pid, application_ id);

exir (pid): t3Xlt (p]d):

schedule (p]d), schedule (pid):

wLocal Scheduler

w

Local Scheduler

Timer Timer

contex[_ switch: context_ switch;

Figure 1: The design of proposed coscheduler.

Function Request Event Local Scheduler Action

MPI-Register CMDREG Process Initialization Register requesting process

MPI_Terminate CMDOUT process Termination Remove requesting process

MPI_Schedule CMDSCH Message Arrival Schedule retquestir~g-process, if allowed

Table 1: Summary of newly defined MPI functions.

in Fig. 1.

2.2 Implementation

The proposed coscheduler described has been implemented and evaluated on an eight-node Compaq

Alpha cluster testbed running Tru64 Unix 5.0 at, LLNL. Each node has two Compaq Alpha EV6 processor

operating at 500 MHz with 1 GB of main memory. The implementation exercise has involved only minor

modifications to a user-level message-passing library and the development of two very simple daemon

processes. The implementation of the proposed coscheduler is described in detail in what follows.

2.2.1 MPICH Library

We have modified an open-source message-passing library, MPICH [14], to implement the user-level

message trapping as well as the process registry operations. The MPICH is a freely-available, high-

perforrnance, portable implementation of the popular MPI Message Passing Interface standard. We have

chosen the MPICH library mainly due to its popularity and easy access to its source code.

A few new functions are added to the MPICH library in this implementation. These functions notify

the local scheduler when certain events occur through IPC. Those requests are accompanied by the pid

of sending process. The functions are summarized in Table. 1.

MPI-Register is invoked during the initialization phase of an MPI process. The MPI-Register, when

invoked, sends a CMDREG request to local scheduler. An MPI application id is also sent along with the

request to notify the local scheduler of which MPI job the process belongs to. The local scheduler creates

a small shared-memory region at the time a process is registered through which the process learns its

scheduling status. Similarly, MPI_Terminate is invoked during the finalization phase of the MPI process

and sends CMDOUT request to the local scheduler. The terminating process is then removed from the

list of processes assigned to the local scheduler. MPI_Schedule sends CMDSCH request along with its

pid to local scheduler in an attempt to schedule itself.

6



A few MPICH functions need to be modified as well to incorporate the capability to handle messages

carrying process stat us information. These functions are net send, net ~ecv, and net _recv.t imeout.

We have modified net-send in such a way that a single byte representing the status of sending process

is attached to each outgoing message. The actual length of the message is increased by one byte. The

additional byte is prefixed to the message, because the user can specify arbitrary message length at the

receiving end. If we postfix the status information to an outgoing message, and a different message length

is given in a receiving routine, the information can be lost or even worse, incorrect status information can

be extracted by the receiving process. By always sending the status information before actual message

body, we can preserve and retrieve correct status information regardless of the message length specified

by a user.

With the modifications made to net ~ecv and net ~ecv-t imeout, the status information is separated

from each incoming message and actual message is passed to whichever routine invoked these functions.

AI1 early scheduling decision, which is whether a context switch is needed or not, is made at this level

using the status information received. That is, if the sending process is currently scheduled and the

receiving process is not, a context switch is necessary. A request for context switch is sent to the local

scheduler by calling MPI_Schedule.

2.2.2 Class Scheduler

III our implementation, we use the Compaq Tru64 UNIX priority boost mechanism called class sched-

uler [7] to schedule processes of a parallel job. With the class scheduler, we can define a class of system

entities and assign certain percentage of CPU time to the class. The class scheduler ensures that access

to the CPUS for each class does not exceed its specified limit. The entities that constitute a class can

be users. groups, process groups, pids, or sessions. There may be a number of classes on a system. A

database of classes, class members, and the percentage of CPU time for the class is maintained by the

class scheduler. The database can be modified while the class scheduler is running, and the changes take

effect immediately.

The kernel has very little knowledge of class scheduling. A class, in the kernel, is an element in an

array of integers representing clock ticks. A thread that is subject to class scheduling has knowledge of its

index in the array. Each time the thread uses CPU time, the number of clock ticks used is subtracted from

the array element. When the count reaches zero the thread is either prevented from running altogether

or, optionally, receives the lowest scheduling priority possible.

When class scheduling is enabled, a daernon is started. The daeInon wakes up periodically and

calculates the total number of clock ticks in the interval. Then, for each class in the database, it divides

the total by the percentage allocated to the class and places the result into an array. When finished, the

array is written to the kernel.

The class scheduler provides APIs which system developers can use to enable and disable class schedul-

ing, create and destroy a class, add and remove a class member, change the CPU percentage allotment

for a class, and so on. Using these APIs, we define a class of pids for each group of processes constituting

the same MPI job. We use the application id of the MPI job as the name of the class. Processes of an

MPI job can be scheduled at the same time to the class representing those processes. For example, if we

allocate 100’ZOof CPU time to a class, only the processes defined in the class will receive CPU time. The

local scheduler performs a context switch by swapping the CPU percentage of two classes of processes

that are being context-switched.

It was mentioned that all the processes, whether currently scheduled or not, need to receive some CPU

time periodically to trap incoming messages at the user-level. One way of doing this is to let the local

scheduler periodically allocate 1007o of CPU time to each of the classes in the system for a very short

time. This is a feasible solution, but it may burden the local scheduler as the number of jobs assigned to

7



the node increases. Therefore, we rely on the class scheduler to achieve the user-level message trapping.

In our implementation, 1% of CPU time is allocated to each unscheduled class so that the processes in

the class are executed for very short periods of time, and remaining CPU percentage is allocated to a

scheduled class. Therefore, if there are n classes in the system, (n – 1) YOof CPU time is allocated to n – 1

classes, and a scheduled class receives (100 – n + 1) YOof CPU time. The class scheduler is configured

to strictly adhere to these percentage allocations and time allocated to a class which is not used by that

class is not used by other job classes. Whenever a class is created or destroyed, the CPU allotment to

the scheduled class is adjusted accordingly.

2.2.3 Daemons

Two daernons are used to perform process scheduling in this implementation, a timer and a scheduler

daernon. The task of the timer daemon is to periodically send a request for context switch to scheduler

daemon to enforce time-sharing. The timer daemon simply repeats the process of sleeping for a predeter-

mined interval, which works as time-slice, followed by sending the context-switch request to the scheduler

daemon.

The scheduler daemon performs key scheduling operations such as managing process and MPI job

status and changing the priority of processes. The scheduler daemon is a simple server that acts upon

requests from either user process or the timer daemon. Those requests are sent to the scheduler daemon

via shared-memory IPC, since the IPC occurs only within a single node and the shared-memory provides

the fastest IPC mechanism. A shared-memory region, through which requests are sent, is created when

the scheduler daemon starts execution.

The main body of the scheduler daemon consists of a loop in which the daemon waits for a request

and then execute certain operations corresponding to the request received. There are five requests defined

for scheduler daemon: CMDREG, CMDOUT, CMDCSW. CMDSCH. and CMDDWN.

The CMDDWN request terminates the scheduler daemon. On receiving this request, the scheduler

daelnOIl removes the shared-memory region created for IPC and then exits. CMDREQ and CMDOUT

requests are associated with the process management operations. An MPI process sends CMDREQ to

not ify that the process is about to start execution. When receiving this request, the scheduler daemon

creates an entry in the process table it maintains. An entry in the process table contains information

about a process such as its pid and the MPI job that the process belongs to. The table also contains

scheduling information on the MPI job assigned to the node. Such information on an MPI job includes

the job id, the number of member processes, the time when the job was scheduled and preempted, and

a pointer to a shared-memory region from which processes of the job read the job’s status. The table is

organized in such a way that there is a link between each MPI ,job and all the processes that constitute the

job. When an MPI job is registered for the first time, the scheduler daemon performs two things. First,

it creates an entry for the job in the process table. Next, a class is created using the job’s application id

as the class name. The pid of the requesting process is added to the table and the class created. A newly

created class receives 1YOof CPU time initially. The CPU time allotment of scheduled class is adjusted

accordingly when a new class is created.

CMDOUT, request issued by a terminating process, does the reverse of CMDREG. Receiving CMD-

OUT request, the scheduler daemon removes the pid of the sending process from the process table and

the corresponding class. When the last process terminates, corresponding process table entries and class

defined for the terminating job are destroyed, and the CPU time allotment of scheduled class is adjusted.

CMDCSW request is issued by the timer daemon. Upon receiving this request, the scheduler daemon

simply swaps the CPU time allotment of currently scheduled job with that of the next job in the queue.

This achieves the context switch effectively. The queue is implemented as a circular list, with two pointers

pointing the head and the tail of the queue respectively, to facilitate round-robin scheduling. CMDSCH

8



request also causes a context switch, but it is issued by a user process upon a message arrival. The

scheduler daemon, receiving this request, moves the requesting job right after the scheduled job in the

queue and performs a context-switch in the same way as when CMDCSW request is received. Whenever

a request involving context switch is received, the scheduler daernon first determines whether the context

switch is allowed by checking if currently scheduled job has consumed at least the GMET. If not, the

request is discarded.

The pseudo codes for the daemons are given below.

Timer Daemon:

1. Create a pointer to a shared-memory region for IPC.

2. loop

Sleep for n seconds, where n is predetermined value for time-slice.

Send CMDCSW to scheduler daemon.

end loop

Scheduler Daemon:

1. Create a shared-memory region for IPC.

2. Initialize process table and system queue.

3. loop

Wait for a request.

switch (request)

case CMDDWN:

Destroy classes. if there are any.

Remove the shared-memory region.

Terminate execution.

case CMDREG:

if there is no entry for MPI job corresponding to the requesting process, then

Create an entry in the process table and perform initialization for the job.

Create a new class for the job and assign 1% of CPU time to the class.

Create a shared-memory region for the coll~rll~lllicat,ioll of job status.

if there are no other job in the system, then

Schedule the newly created job.

else

Adjust the CPU time allotment of a scheduled job.

end if

end if

Add the sending process to the process table and corresponding class.

case CMDOUT:

Remove requesting process from the process table and the class the process belongs to.

if the number of processes in an MPI job corresponding to the requesting process is zero, then

Destroy the entry and the class defined for the MPI job.

if the job is currently scheduled, then

Schedule the next job in the queue, if there is one.

else

Adjust the percentage of CPU time allocated to a scheduled job.

end if

end if

9



case CMDCSW:

if currently scheduled job, if exists, has run at least for the GMET, then

Swap the CPU time allotment of the scheduled job with that of the next job in the queue.

end if

case CMDSCH:

if currently scheduled job, if exists, has run at least for the GMET, then

Move the requesting job right after currently scheduled job.

Swap the CPU time allotment of the scheduled job with that of the next job

end if

end switch

n the queue.

3 Experimental Results

3.1 NAS Parallel Benchmarks

We have selected the NAS Parallel Benchmarks (NASPBS) [8, 9, 10, 25] to study the performance of

proposed coscheduling technique. The NASPBS are a widely-recognized suite of scientific benchmarks

developed at NASA Ames Research Center to study the performance of parallel supercomputers on

scientific applications. The benchmarks consist of eight benchmark programs, each of which focuses on

some important aspect of highly parallel supercomputing for aerophysics applications.

Most of those benchmark programs are written in Fortran. There are three standard sizes for the

NASPBS, known as classes A, B, and C. The nominal benchmark sizes for these classes can be found

in [25]. Class A and class C represent the smallest and the largest problem sizes, respectively. The

NASPBS can be compiled for different number of processors as well. The eight problems consist of five

kernels and three simulated computational fluid dynamics (CFD) applications. These benchmarks are

briefly described in what follows, where five kernel benchmarks are discussed first.

Embarrassingly Parallel (EP) The first of five kernel benchmarks is an embarrassingly parallel

problem. In this benchmark, two-dimensional statistics are accumulated from a large number of Gaus-

sian pseudo-random numbers, which are generated according to a particular scheme that is well-suited

for parallel computation. This is typical of various Monte Carlo applications. This problem involves

minimal communication amongst the processes.

Multigrid (MG) The second kernel is a simplified multigrid benchmark that solves a three-dimensional

Poisson partial differential equation (PDE). This problem is simplified in the sense that it has constant

instead of variable coefficients as in a more realistic application. This code is a good test of both short

and long distance highly structured communication.

Conjugate Gradient (CG) In this benchmark, a conjugate gradient method is used to compute

an approximation to the smallest eigenvalue of a large, sparse, symmetric positive definite matrix. This

kernel is typical of unstructured grid computations in that it tests irregular long-distance communication.

FFT PDE (FT) In this benchmark a three-dimensional PDE is solved using FFTs. This kernel

performs the essence of many spectral methods. It is a good test of long-distance communication perfor-

mance.

Integer Sort (IS) This benchmark tests a sorting operation that is important in particle method

codes. This type of application is similar to particle-in-cell applications of physics, wherein particles are

assigned to cells and may drift out. The sorting operation is used to reassign particles to the appropriate

10



Workload Benchmarks

Workload 1 bt.B.4, ep.B.8 (2), bt.A.4, sp.A.9, mg.A.2, lu.B.4

Workload 2 bt.A.4 (2), lu.A.2 (2), sp.B.9, sp.A.9, sp.A.4, lu.B.2

Workload 3 ep.A.2 (2), ep.A.4 (2), ep.B.8, ep.B.4 (2), ep.A.8

Table 2: Three workloads used.

cells. This benchmark tests both integer computation speed and communication performance. This is

the only code implemented in C in NASPB.

Lower-Upper Diagonal (LU) The first of simulated CFD applications is the LU solver. It does

not perform an LU factorization, but employs a symmetric successive over-relaxation (SSOR) numerical

scheme to solve a regular-sparse, block lower and upper triangular system. The way the SSOR procedure

operates requires the use of a relatively large number of small messages.

Scalar Pentadiagonal (SP) and Block Tridiagonal (BT) In the SP and the BT benchmarks,

multiple independent systems of nondiagonal]y dominant scalar pentadiagonal equations and block tridi-

agonal equations are solved. SP and BT are representative of computations associated with the implicit

operations of CFD codes. In both benchmarks, the granularity of communications is kept large and fewer

messages are sent.

3.2 Performance Evaluation

In this research, we have conducted a performance study on an 8-node Compaq Alpha SMP cluster testbed

to evaluate the proposed coscheduler. Three workloads, each exhibiting different degree of communication

intensity, are used to evaluate the performance under various message traffic conditions. Here, the
communication intensity of a job is measured by the number of messages exchanged during the course of

execution. The first workload consists of randomly selected class A and class B NASPBS and represents

a workload with moderate message traffic, under which the communication intensity of jobs varies to a

great exterlt. The second workload is constructed from the three most communication-intense NASPBS
(LU, SP, and BT) to represent a workload with heavy message traffic. The third workload consists of
only the EP NASPB in which there is little communication between processes. The three workloads are

summarized in Table 2. The performance measure of interest in this study is mean job response time.

Fig. 2 compares the performance of the new coscheduling technique with that of uncoordinated time-

sharing. The time slice and GMET used in this experiment are 15 and 5 seconds, respectively. For all

three workloads, the new coscheduler shows better or comparable response time behavior compared to the

uncoordinated time-sharing. As expected, the best performance is achieved when the message traffic is

heavy (Workload 2). Here, the mean job response time is reduced by 50’ZOwhen the proposed coschedu]ing

technique is used. The measures for mean job response time are almost identical for the Workload 3.

This is because the effect of uncoordinated scheduling of the processes constituting a parallel job on

performance is not significant when the message traffic is light. These results are a strong indication

that the proposed technique is a promising approach to coscheduling, which can efficiently improve the

performance of parallel jobs under various message traffic conditions.

Fig. 3 shows the response-time behavior of the proposed coscheduling technique and uncoordinated

time-sharing scheduling for varying degree of multiprogramming (DOM). The time-slice and the GMET

lengths are the same as in Fig. 2. The workloads used in this experiment are summarized in Table 3. We

increase the load to the system by adding a new set of randomly selected NASPBS to existing workload,

as DOM increases. In this experiment, only class A benchmarks are considered to minimize the effect of

paging overhead. As Fig. 3 indicates, the proposed coscheduling scheme obtains the best performance gain

11



5000.0
Uncoordinated

Coscheduling

Scheduling

c
m

2
1000.0

0.0 .— —. I
Workload 1 Workload 2 Workload 3

Workloads

Figure 2: Comparison of mean job response time for different workloads (Time slice = 15 seconds and

GMET = 5 seconds).

6000.0 ,

2

- Uncoordinated Scheduling ~

; Coscheduling

4 5

DOM

Figure 3: Comparison of mean job response time for different degree of multiprogramming (DOM) (Time

slice = 15 seconds and GMET = 5 seconds).

I DOM I Benchmarks

~

sp.A.16, sp.A.9, lu.A.8, cg.A.16, ft.A.8

sp.A.16, sp.A.9, lu.A.8, cg.A.16, ft.A.8, ep.A.8

Table 3: The workloads used for each DOM.

12



‘1
_ Workload 1

c-~ Workload 2
1

MWorkload3

1

A—M——-A——.–-–A. -- -—–d

0.0 L
-L— ,.

0.0 5.0 10.0 15.0

GMET (See)

Figure 4: The effect of the GMET on performance (Time slice = 30 seconds).

(85 % reduction in response time) when the DOM is 2. This is because without coordinated scheduling,

processes of parallel jobs tend to block very frequently waiting for their communicating peers to be

scheduled, whereas our technique minimizes the blocking time considerably through coscheduling of the

processes. However, the performance gain decreases as the DOM increases. The reason for this is that as

the number of time-shared jobs increases, the waiting time due to blocking is compensated by increased

computation and communication interleave, while coscheduling the parallel jobs becomes increasingly

difficult. This experiment highlights the need for an additional process allocation mechanism, which can

control and limit the DOM of the system.

Figures 4 and 5 examine the effect of the GMET and the time-slice lengths on performance of the

proposed coscheduler, respectively. Fig. 4 shows the response-time behavior of the coscheduler for three

workloads described in Table 2 as the length of GMET varies. The time-slice length in this experiment

is set to 30 seconds. The results reveal that the GMET length does not affect the performance of the

coscheduler for workloads 1 and 3, where the communication intensity is relatively low. On the other

hand, the GMET length has significant effect on the system performance for the workload 2 in which

the communication intensity is high. If the GMET length is set too small for such a workload with high

communication intensity, coscheduling a parallel job is extremely difficult because some of the processes

that constitute the parallel job are highly likely to be preempted before the coscheduling is established

due to the increased message traffic. If the length of GMET is too large, the coscheduler fails to quickly

respond to incoming context-switch requests from remote processes> and this degrades the performance.

However, the performance degradation in this case is not as severe as in the previous case, since the

large GMET length still prevents excessive context-switches. This is clearly visible in Fig. 4, where the

response-time curve for the workload 2 sharply drops and then increases as the GMET length changes

from 2 through 5 seconds. For the GMET lengths greater than 5 seconds, the response-time behavior

remains almost unchanged, since most of context-switch requests are discarded with such long GMETs

and the performance is strictly governed by the length of the time slice used.

Fig. 5 plots the changes in response time as the time-slice length varies for the three workloads. The

GMET length is set to 5 seconds. As expected, the performance of the coscheduler is hardly affected by the

time-slice length for workload 3. However, the response time continuously increases for both workloads 1

13



,,,

_ Workload 1

R-o Workload 2

_ Workload 3

/–—— <-–--–-—— “

/
/

/

L————.+-.–——--A—— —+— -- -A

0.0 L———-. — .—.———-J—

5.0 10.0 15.0 20.0 25.0

Time Slice (See)

Figure 5: The effect of time slice on performance (G MET = 5 seconds).

and 2 with time-slices greater than 15 seconds. This can be explained in conjunction with the results from

the previous experiment. Since there is no global cent rol in our design: which could schedule all processes

of a parallel job concurrently, a situation in which scheduled processes that constitute different parallel

jobs contend for scheduling of their communicating peers occurs quite frequently. If the GMET length is

set too large (as in this experiment), the context-switch requests through messages sent to remote nodes

are discarded and hence the parallel jobs eventually stall until a context-switch is initiated by one of the

timer daemons. Consequently, the waiting time of each job increases as the time-slice length increases.

As shown in Fig. 4 and Fig. 5, the GMET and the time-slice lengths can have significant effect on

performance and hence, selecting optimal values for these parameters is critical. However, such optimal

values are highly workload-dependent and therefore, careful workload analysis must be conducted. The

experiment results also suggest that in general short time-slice and long GMET lengths are favorable to

obtaining good system performance.

4 Concluding Remarks and Future Study

Efficiently coscheduling processes of message-passing parallel jobs on a time-shared cluster of computers

poses great challenges. In this paper, we propose a new technique for a cluster of SMP machines, which
offers a scalable, portable, efficient, and cost-effective solution for achieving coscheduling. The proposed

technique uses message arrivals to direct the system towards coscheduling and hence requires no explicit

synchronization mechanism. Unlike other coscheduling schemes based on message arrivals, however,

incoming messages are caught by user processes to avoid any need for additional hardware and software.

The status of a sending process is attached to each outgoing message so that better scheduling decisions

can be made at the receiving end. Processes are guaranteed to run at least for a certain period of time

once scheduled to ensure that each parallel job makes progress while being coscheduled. This design

principle is the key to the success of our coscheduler in obtaining high performance. Experimental results

indicate that the proposed technique is a promising and inexpensive approach to efficient coscheduling,

which can improve the performance significantly over uncoordinated scheduling.

14



There are several interesting directions for future research. Currently, the proposed design lacks

a mechanism to ensure fair sharing of CPU time amongst parallel jobs and hence favors parallel jobs

that exchange messages frequently. An efficient mechanism to enforce the fairness rule is needed. The

performance of our coscheduler is greatly affected by the length of time-slice and GMET. The results from

a preliminary analysis reveal that short time-slice and long GMET lengths are beneficial to achieving

good system performance. We plan to conduct more rigorous study on the effect of these parameters on

performance in the future study. Finally, tests of this technique in heterogeneous computing environment

could provide the ability to execute even larger problems.

References

[I] T. E. Anderson, D. E. Culler, and D. A. Patterson. A Case for NOW (Neworks of Workstations).

IEEE Micro, 15(1) :54-64, Feb. 1995.

[2] A. C. Arpaci-Dusseau, D. E. Culler, and A. M. Mainwaring. Scheduling with Implicit Information

in Distributed Systems. III Proc. ACM SIGMETRICS 1998 Conf. on Measurement o,n,o!Modeling oj

Computer Ssystems, 1998.

[3] ASCI Blue Mountain. http: //www. lanl . gov/asci/bluemtn/bluemtn .html.

[4] ASCI Blue Pacific. http: //www. llnl . gov/platf orms/bluepac.

[5] ASCI Project. http: //www. llnl. gov/asci.

[6] ASCI Red. http: //www. sandia. gov/ASCI/Red.

[7] Class Scheduler. http: //www. Unix. digital. tom/f aqs/publications/base _doc.

[8] D. H. Bailey et al. The NAS Parallel Benchmarks. ln,ternation,ul .Jour7),al of Supercomputer Appli-
cations, 5:63–73, 1991.

[9] D. H. Bailey et al. The NAS Parallel Benchmarks. Technical Report NASA Technical Memorandum

103863, NASA Ames Research Center, 1993.

[10] D. H. Bailey et al. The NAS Parallel Benchmarks 2.0. Technical Report NAS-95-020, NASA Ames

Research Center, Dec. 1995.

[11] D. H. Bailey et al. Valuation of Ultra-Scale Computing Systems: A White Paper, Dec. 1999.

[12] D. J. Feitelson and M. Jette. Improved Utilization and Responsiveness with Gang Scheduling. In

IPPS ’97 Workshop on Job Scheduling Strategies for Parallel Processing, Vol. 1291 of Lecture Notes

in Computer Science, pages 238–261. Springer-Verlag, Apr. 1997.

[13] H. Franke, P. Pattnaik, and L. Rudolph. Gang Scheduling for Highly Efficient Multiprocessors. 111

Proc. Sixth Symp. on the Frontiers of Massively Parallel Processing, Oct. 1996.

[14] W. Gropp and E. Lusk. A High-Performance, Portable Implementation of the MPI Message Passing
Interface Standard. Parallel Computing, 22:54-64, Feb. 1995.

[15] IBM Corporation. LoadLeveler’s User Guide, Release 2.1.

15



[16] J. E. Moreira et al. A Gnag-Scheduling System for ASCI Blue-Pacific. In Proc. Distributed Computing

and Metacomputing (D CM) Workshop, High-Performance Computing and Networking ’99, Apr.

1999.

[17] M. Jette. Performance Characteristics of Gang Scheduling in Multiprogrammed Environments. III

Proc. SuperComputing97’, Nov. 1997.

[18] M. Jette. Expanding Symmetric Multiprocessor Capability Through Gang Scheduling. In IPPS’98

Workshop on Job Scheduling Strategies for Parallel Processing, Mar. 1998.

[19] M. Jette, D. Storch, and E. Yim. Timesharing the Cray T3D. In Gray User Group, pages 247-252,

Mar. 1996.

[20] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard. International Journal
of Supercomputer Applications, 8(3/4):165–414, 1994.

[21] N. J. Boden et al. Myrinet: A Gigabit-per-second Local Area Network. IEEE ~~.ro, 15(1):29-36,

Feb. 1995.

[22] S. Nagar, A. Banerjee, A. Sivasubramaniam, and C. R. Das. A Closer Look At Coscheduling

Approaches for a Network of Workstations. In Proc. Ilth ACM Symp. of Parallel Algorithms and

Architectures, June 1999.

[23] J. K. Ousterhout. Scheduling Technique for Concurrent Systems. In lnt’1Conf. on Distributed

Computing Sgstems, pages 22-30, 1982.

[24] S. Pakin, M. Lauria, and A. Chien. High performance Messaging on Workstations: Illinois Fast

Meessages (FM). 11~Proc. Supercomputing ’95. Dec. 1995.

[25] S. Saini and D. H. Bailey. NAS Parallel Benchmark (Version 1.0) Results 11-96. Technical Report
NAS-96-18, NASA Ames Research Center, Nov. 1996.

[26] J. Skovira, W. Chan, H. Zhou, and D. Lifka. The Easy-LoadLeveler API Project. II] lPPS’96 Work-

shop on Job Scheduling Strategies for Parallel Processing, Vol. 1162 of Lecture Notes in Computer

Science, pages 41-47. Springer-Verlag, Apr. 1996.

[27] P. G. Sobalvarro. Demo,nd-based Coschedzding of Parallel Jobs on, Multiprogrammed Multiprocessors.

PhD thesis, Dept. of Electrical Engineering and Compuer Science, Massachusetts Institutute of

Technology, 1997.

[28] P. G. Sobalvarro and W. E. Weihl. Demand-based Coscheduling of Parallel Jobs on Multipr

ogrammed Multiprocessors. In Proc. IPPS ’95 Workshop on Job Scheduling Strategies for Paral-

lel Processing, pages 63-75, Apr. 1995.

[29] T. von Eicken and A. Basu and V. Buch and W. Vogels. U-Nnet: A User-Level Network Interface

for Parallel and Distributed Computing. In Proc. 15th ACM Symp. on Operating System Principles,

Dec. 1995.

[30] T. von Eicken and D. E. Culler and S. C. Goldsten and K. E. Schauser. Active Messages: A

Mechanism for Integrated Communicant ion and Comput at ion. In Proc. 19th Annual Int’1 symp. on

Computer Architecture, Dec. 1995.

[31] The MPI Forum, May 1995. http: //www .mcs . anl. gov/mpi/standard .html.

[32] Top 500 Supercornputer Sites. http: //www. netlib. org/benchmark/top500. html.

16




